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Abstract—This paper presents the mechanical verification of 

a simplified model of a rapid Byzantine-fault-tolerant self-

stabilizing protocol for distributed clock synchronization 

systems.  This protocol does not rely on any assumptions 

about the initial state of the system except for the presence 

of sufficient good nodes, thus making the weakest possible 

assumptions and producing the strongest results.  This 

protocol tolerates bursts of transient failures, and 

deterministically converges within a time bound that is a 

linear function of the self-stabilization period.  A simplified 

model of the protocol is verified using the Symbolic Model 

Verifier (SMV) [1].  The system under study consists of 4 

nodes, where at most one of the nodes is assumed to be 

Byzantine faulty.  The model checking effort is focused on 

verifying correctness of the simplified model of the protocol 

in the presence of a permanent Byzantine fault as well as 

confirmation of claims of determinism and linear 

convergence with respect to the self-stabilization period.  

Although model checking results of the simplified model of 

the protocol confirm the theoretical predictions, these results 

do not necessarily confirm that the protocol solves the 

general case of this problem.  Modeling challenges of the 

protocol and the system are addressed.  A number of 

abstractions are utilized in order to reduce the state space.
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1. INTRODUCTION 

The concept of self-stabilizing distributed computation was 

first presented in a classic paper by Dijkstra [2].  In that 

paper, he speculated whether it would be possible for a set 

of machines to stabilize their collective behavior in spite of 

unknown initial conditions and distributed control.  A 

fundamental criterion in the design of a robust distributed 

system is to provide the capability of tolerating and 

potentially recovering from failures that are not predictable 

in advance.  Overcoming such failures is most suitably 

addressed by tolerating Byzantine faults [3].  There are 

many algorithms that address permanent faults [4], where 

the issue of transient failures is either ignored or 

inadequately addressed.  There are many efficient Byzantine 

clock synchronization algorithms that are based on 

assumptions on initial synchrony of the nodes [4, 5] or 

existence of a common pulse at the nodes, e.g. the first 

protocol in [6].  There are many clock synchronization 

algorithms that are based on randomization and, therefore, 

are non-deterministic, e.g. the second protocol in [6]. 

Solving these special cases is insufficient to claim that an 

algorithm is self-stabilizing.  The main challenges associated 

with self-stabilization are the complexity of the design and 

the proof of correctness of the protocol.  Another difficulty 

is achieving an efficient convergence time for the proposed 

self-stabilizing protocol.  Typically, verification of a 

protocol is conducted by the composition of a paper-and-

pencil proof.  Verification of such proofs is another 

challenge associated with self-stabilization, especially as the 

complexity of the protocol increases.  Such proofs are error 

prone.  One recent work in this area is the algorithm 

developed by Daliot et al [7] called the Byzantine self-

stabilization pulse synchronization (BSS-Pulse-Synch) 

protocol.  A flaw in BSS-Pulse-Synch protocol was found 

and documented in a report by Malekpour et al. [8].  Such 

flaws are harder to pinpoint in the proof argument than 

finding a counterexample via simulation or model checking. 

 

Another technique sometimes used to verify the correctness 

of a design is based on extensive simulation but it too can 

miss significant errors when the number of possible states is 

very large.  Simulation of specific scenarios requires proper 

set up of the system for each case.  As the number of cases 

to be examined increases, this process becomes impractical. 
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Model checking is a method for mechanically verifying 

finite-state concurrent systems.  Specifications about the 

system are expressed as temporal logic formulas, and 

efficient symbolic algorithms are used to traverse the model 

defined by the system and check if the specification holds or 

not.  The verification procedure is an exhaustive search of 

the state space of the design.  As a result, model checking is 

a viable means for mechanically verifying the claims of a 

distributed clock synchronization protocol.  Model checking 

also provides insight into the behavior of the system even if 

it cannot fully explore the entire state space.  Therefore, 

model checking is a practical alternative for accessing 

correctness of a protocol and proving correctness of a 

protocol instance. 

 

This paper presents model checking efforts in support of the 

claims of a rapid Byzantine-fault-tolerant self-stabilizing 

protocol for distributed clock synchronization systems [9, 

10].  In particular, this effort encompasses the verification of 

correctness of a simplified model of the protocol by 

confirming that a candidate system self-stabilizes from any 

state and tolerates bursts of transient failures in the presence 

of permanent Byzantine faulty nodes.  A permanent 

Byzantine faulty node is a node with arbitrarily malicious 

behavior.  This effort, furthermore, includes the verification 

of claims of determinism and linear convergence of the 

simplified model of the protocol with respect to the self-

stabilization period and in the presence of permanent 

Byzantine faulty nodes.  Although model checking results of 

the simplified model of the protocol are promising, these 

results do not necessarily imply that the protocol solves the 

general case of this problem. 
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Figure 1.  A 4-node system. 

 

As shown in Figure 1, the system under study consists of 4 

nodes, where 3 of the nodes are assumed to be good and one 

of the nodes is Byzantine faulty.  Toward this objective, a 

number of abstractions and reduction techniques are devised 

to reduce the state space.  Also, in order to further reduce 

the state space to a more manageable size, system 

parameters are reduced to their minimal values.  The amount 

of memory needed for the construction of the Binary 

Decision Diagram (BDD) readily reaches the 4GB available 

after construction of the state space.  Therefore, model 

checking of larger and more complex systems poses a 

greater challenge. 

2. THE PROTOCOL 

A distributed system is defined to be self-stabilizing if, from 

an arbitrary state and in the presence of bounded number of 

Byzantine faults, it is guaranteed to reach a legitimate state 

in a finite amount of time and remain in a legitimate state as 

long as the number of Byzantine faults are within a specific 

bound.  A legitimate state is a state where all good clocks in 

the system are synchronized within a given precision bound. 

 

The self-stabilization problem has two facets.  First, it is 

inherently event-driven and, second, it is time-driven.  

Most attempts at solving the self-stabilization problem have 

focused only on the event-driven aspect of this problem.  

The protocol presented here properly merges the time and 

event driven aspects of this problem in order to self-stabilize 

the system in a gradual and yet timely manner.  Furthermore, 

this protocol is based on the concept of a continual vigilance 

of the state of the system in order to maintain and guarantee 

its stabilized status, and a periodic reaffirmation of nodes by 

declaring their internal status.  Finally, initialization and/or 

reintegration are not treated as special cases.  These 

scenarios are regarded as inherent parts of this self-

stabilizing protocol. 

 

The self-stabilization events are captured at a node via a 

selection function that is based on received valid messages 

from other nodes.  When such an event occurs, it is said that 

a node has accepted or an accept event has occurred.  In 

order to achieve self-stabilization, the nodes communicate 

by exchanging two self-stabilization messages labeled 

Resync and Affirm.  The Resync message reflects the time-

driven aspect of this self-stabilization protocol, while the 

Affirm message reflects the event-driven aspect of it.  The 

Resync message is transmitted when a node realizes that the 

system is no longer stabilized or as a result of a 

resynchronization timeout.  The Affirm message is 

transmitted periodically and at specific intervals primarily in 

response to a legitimate self-stabilization accept event at the 

node. 

 

The time difference between interdependent consecutive 

events is expressed in terms of the minimum event-response 

delay, D, and network imprecision, d.  As a result, the 

approach presented here is expressed as a self-stabilization 

of the system as a function of the expected time separation 

between the consecutive Affirm messages, ∆AA.  To 

guarantee that a message from a good node is received by all 

other good nodes before a subsequent message is 

transmitted, ∆AA is constrained such that ∆AA ≥ (D + d).  

Unless stated otherwise, all time dependent parameters of 

this protocol are measured locally and expressed as 

functions of ∆AA. 

 

Three fundamental parameters characterize the self-

stabilization protocol presented here, namely K, D, and d.  

The number of faulty nodes, F, the number of good nodes, 



 3 

G, and the remaining parameters that are subsequently 

enumerated are derived parameters and are based on these 

three fundamental parameters.  Furthermore, except for K, 

F, G, TA and TR, which are integer numbers, other 

parameters are real numbers.  In particular, ∆AA is used as a 

threshold value for monitoring of proper timing of incoming 

and outgoing Affirm messages.  The derived parameters TA = 

G - 1 and TR = F + 1 are used as thresholds in conjunction 

with the Affirm and Resync messages, respectively. 

 

The assessment results of the monitored nodes are utilized 

by the node in the self-stabilization process.  The node 

consists of a state machine and a set of (K-1) monitors.  The 

state machine has two states, Restore state (T) and 

Maintain state (M), that reflect the current state of the node 

in the system as shown in Figure 2, where, Resync messages 

are represented as R and Affirm messages are represented as 

A. 
 A

MT

R

R, A A

 

Figure 2.  The node state machine. 

 

2.1. Transitory Conditions 

The transitory conditions enable the node to migrate to the 

Maintain state and are defined as: 

1. The node is in the Restore state,  

2. At least 2F accept events in as many ∆AA intervals have 

occurred after the node entered the Restore state, 

3. No valid Resync messages are received for the last 

accept event. 

 

2.2. Message Validity 

Starting from the last transmission of the Resync message 

consecutive Affirm messages are transmitted at ∆AA intervals, 

where ∆AA ≥ (D + d).  In [9, 10] ∆RR,min is defined to be 

∆RR,min = 2F∆AA + 1 clock ticks.  At the receiving nodes, the 

following definitions hold: 

 

– A message (Resync or Affirm) from a given source is 

valid if it is the first message from that source.  A 

message shall remain valid for the duration of one ∆AA. 

– An Affirm message from a given source is early if it 

arrives earlier than (∆AA - d) after previous valid 

message (Resync or Affirm) from the same source. 

– A Resync message from a given source is early if it 

arrives earlier than ∆RR,min after previous valid Resync 

message from the same source. 

– An Affirm message from a given source is valid if it is 

not early. 

– A Resync message from a given source is valid if it is 

not early. 

 

2.3. System Assumption 

1. The cause of transient faults has dissipated. 

2. All good nodes actively participate in the self-

stabilization process and correctly execute the 

protocol. 

3. At most F of the nodes are faulty. 

4. The source of a message is distinctly identifiable by 

the receivers from other sources of messages. 

5. A message sent by a good node will be received 

and processed by all other good nodes within ∆AA, 

where ∆AA ≥ (D + d). 

6. The initial values of the state and all variables of a 

node can be set to any arbitrary value within their 

corresponding range (In an implementation, it is 

expected that some local capabilities exist to 

enforce type consistency of all variables.) 

 

2.4. Protocol Functions 

Two functions InvalidAffirm() and InvalidResync() are used 

by the monitors.  The InvalidAffirm() function determines 

whether or not a received Affirm message is valid.  The 

InvalidResync() function determines if a received Resync 

message is valid.  When either of these functions returns a 

true value, it is indicative of an unexpected behavior by the 

corresponding source node. 

 

The Accept() function is used by the state machine of the 

node in conjunction with the threshold value TA = G - 1.  

When at least TA valid messages (Resync or Affirm) have 

been received, this function returns a true value indicating 

that an accept event has occurred and such an event has also 

taken place in at least F other good nodes.  When a node 

accepts, it consumes all valid messages used in the accept 

process by the corresponding function.  Consumption of a 

message is the process by which a monitor is informed that 

its stored message, if it existed and was valid, has been 

utilized by the state machine. 

 

The Retry() function determines if at least TR other nodes 

have transitioned out of the Maintain state, where TR = F +1. 

When at least TR valid Resync messages from as many nodes 

have been received, this function returns a true value 

indicating that at least one good node has transitioned to the 

Restore state.  This function is used to transition from the 

Maintain state to the Restore state. 

 

The TransitoryConditionsMet() function determines proper 

timing of the transition from the Restore state to the 

Maintain state.  This function keeps track of the accept 

events, by incrementing the Accept_Event_Counter, to 

determine if at least 2F accept events in as many ∆AA 

intervals have occurred.  It returns a true value when the 

transitory conditions are met. 
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The TimeOutRestore() function uses PT as a boundary value 

and asserts a timeout condition when the value of the 

State_Timer has reached PT.  Such a timeout triggers the 

node to reengage in another round of self-stabilization 

process.  This function is used when the node is in the 

Restore state. 

 

The TimeOutMaintain() function uses PM as a boundary 

value and asserts a timeout condition when the value of the 

State_Timer has reached PM.  Such a timeout triggers the 

node to reengage in another round of synchronization.  This 

function is used when the node is in the Maintain state. 

 

In addition to the above functions, the state machine utilizes 

the TimeOutAcceptEvent() function.  This function is used to 

regulate the transmission time of the next Affirm message.  

This function maintains a DeltaAA_Timer by incrementing it 

once per local clock tick and once it reaches the 

transmission time of the next Affirm message, ∆AA, it returns 

a true value.  In response to such a timeout, the node 

broadcasts an Affirm message. 

 

2.5. The Self-Stabilizing Clock Synchronization Problem 

To simplify the presentation of this protocol, it is assumed 

that all time references are with respect to a real time t0, 

where t0 = 0 when the system assumptions are satisfied, and  

for all t > t0 the system operates within the system 

assumptions.  Let  

 

• C be the bound on the maximum convergence time,  

• ∆Local_Timer(t), for real time t, the maximum 

difference of values of the local timers of any two 

good nodes Ni and Nj, where Ni, Nj ∈ KG, and KG is 

the set of all good nodes, and  

• ∆Precision, also referred to as self-stabilization 

precision, the guaranteed upper bound on the 

maximum separation between the local timers of 

any two good nodes Ni and Nj in the presence of a 

maximum of F faulty nodes, where Ni, Nj ∈ KG. 

 

A good node Ni resets its variable Local_Timeri periodically 

but at different points in time than other good nodes.  The 

difference of local timers of all good nodes at time t, 

∆Local_Timer(t), is determined by the following equation while 

recognizing the variations in the values of the Local_Timeri 

across all good nodes. 

∆Local_Timer(t) = min ((Local_Timermax(t) – Local_Timermin(t)),  

       (Local_Timermax(t - ∆Precision) –  

        Local_Timermin(t - ∆Precision))), 
where, 

Local_Timermin(x) = min ({Local_Timeri(x) | Ni ∈ KG}),  

Local_Timermax(x) = max ({Local_Timeri(x) | Ni ∈ KG}),  

 

and, there exist C and ∆Precision: 

Convergence:  ∆Local_Timer(C) ≤ ∆Precision  

Closure:          ∀ t, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision 

 

The values of C, ∆Precision, and the maximum value for 

Local_Timeri, Local_Timer_Max, are determined to be: 

 

C = (2PT + PM) ∆AA, 

∆Precision = (3F - 1) ∆AA - D + ∆Drift, 

Local_Timer_Max = PT + PM,  

 

and the amount of drift from the initial precision is given by 

 

∆Drift = ((1+ρ) - 1/(1+ρ)) PEffective ∆AA. 

 

Note that since Local_Timer_Max > PT /2 and since the 

Local_Timer is reset after reaching Local_Timer_Max 

(worst case wraparound), a trivial solution is not possible. 

 

2.6. The Byzantine-Fault-Tolerant Self-Stabilizing Protocol 

for Distributed Clock Synchronization Systems 

The presented protocol is described in Figure 3 and 

consists of a state machine and a set of monitors which 

execute once every local oscillator tick. 

 

 

Monitor: 

case (incoming message from the corresponding node) 

{Resync: 

if InvalidResync() then 

Invalidate the message 

else 

Validate and store the message,  

Set state status of the source. 

Affirm:  

if InvalidAffirm() then 

Invalidate the message 

else 

Validate and store the message.  

Other:   

Do nothing. 

} // case 

 

 

Figure 3.a.  The self-stabilization protocol. 
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Node: 

case (state of the node) 

{Restore:  

if TimeOutRestore() then  

Transmit Resync message, 

Reset State_Timer, 

Reset DeltaAA_Timer, 

Reset Accept_Event_Counter, 

Stay in Restore state, 

elsif TimeOutAcceptEvent() then 

Transmit Affirm message, 

Reset DeltaAA_Timer, 

if Accept() then  

Consume valid messages, 

Clear state status of the sources, 

Increment Accept_Event_Counter, 

if TransitoryConditionsMet() then 

Reset State_Timer, 

Go to Maintain state, 

else 

Stay in Restore state. 

 else 

Stay in Restore state., 

else 

Stay in Restore state. 

 

Maintain: 

if TimeOutMaintain() or Retry() then 

Transmit Resync message, 

Reset State_Timer, 

Reset DeltaAA_Timer, 

Reset Accept_Event_Counter, 

Go to Restore state,  

elsif TimeOutAcceptEvent() then 

if Accept() then  

Consume valid messages., 

if (State_Timer = ∆Precision) 
Reset Local_Timer., 

Transmit Affirm message, 

Reset DeltaAA_Timer, 

Stay in Maintain state,  

else 

Stay in Maintain state. 

} // case 

 

 

Figure 3.b.  The self-stabilization protocol. 

 

2.7. Semantics of the pseudo-code 

• Indentation is used to show a block of sequential 

statements. 

• ‘,’ is used to separate sequential statements. 

• ‘.’ is used to end a statement. 

• ‘.,’ is used to mark the end of a statement and at the 

same time to separate it from other sequential 

statements. 

3. MECHANICAL VERIFICATION 

Several approaches were explored toward the mechanical 

verification of the correctness of this protocol.  This effort 

started by simulation of the known cases and grew into 

model checking of all scenarios using various model-

checking tools. 

 

3.1. SMV  

The Cadence Symbolic Model Verifier (SMV) [1] provided 

the desired capability.  SMV allows the designers to 

formally verify temporal logic properties of finite state 

systems.  Developers use SMV to verify the design for all 

possible input sequences, instead of a chosen selection of 

sequences as in simulation. 

 

The initial model of the 4-node system required more 

memory for the construction of the state space than the 

available 2GB of memory.  The initial state space for the 

basic case and in the presence of a Byzantine faulty node is 

given by (Good_Node * Monitors
3
 * Channel

3
 * 

Faulty_Node)
3
, or approximately 4x10

46
 for K = 4, F = 1, G 

= 3, D = 1, d = 0, ∆AA = 1, ρ = 0, ∆Precision = 1, and PT = PM = 

P = 10.  The intuitive solution to this problem was to 

provide more memory.   The amount of memory was 

increased to 4GB, the maximum capacity of the PC.  There 

is a hardware limitation on the amount of memory that can 

be added to a given system.  Furthermore, although 

additional memory eased the state space construction, it did 

not eliminate the problem.  As a result, many abstractions 

were made and a number of reduction techniques were 

devised to circumvent the state space explosion problem.  

Some of the techniques used are explained here.  The 

optimized state space for the basic case and is given by 

(Good_Node * Monitors
3
 * Faulty_Node)

3
, or 

approximately 5x10
24

.  Nevertheless, the protocol can now 

be exhaustively model checked for a 4-node system.  A brief 

history of this effort is reported in [12]. 

 

4. MODELING SIMPLIFICATIONS AND 

ABSTRACTIONS 

The local measures within each node are used to keep track 

of timing of the self-stabilization events.  Although the 

derived parameters are defined with respect to the real time, 

ultimately, in implementations they have to be translated 

into discrete values.  Discretization of the derived 

parameters is performed using the ceiling operation.  In this 

protocol, all local variables and watchdog timers are 

discretized and represented by integer values.  These local 

variables are, therefore, measured with respect to the local 

clock. 
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The state space for modeling of the general case of this 

protocol far exceeds the available 4GB memory.  Thus, in a 

bottom-up approach, a basic case is modeled such that the 

number of parameters needed are minimal and the range of 

each parameter is at its minimum.  A distributed system 

tolerating as many as F Byzantine faults requires a network 

size of more than 3F nodes [3, 11] to maintain synchrony.  

In other words, to guarantee the closure property a minimum 

of 3F+1 nodes are needed.  Therefore, the basic case is 

defined as the minimum number of nodes that can self-

stabilize in the presence of at least one Byzantine faulty 

node and with all other parameters at their minimum.  Thus, 

for the basic case, the number of nodes in the system K = 4, 

the upper bound on the number of faulty nodes F = 1, and 

the minimum number of good nodes, G, is determined to be 

G = K - F = 3 nodes. 

 

Other aspects of the basic case are topological issues.  The 

logical topology is a fully connected graph of a 4-node 

system, where each node is directly connected to another 

node via a dedicated bi-directional channel.  As shown in 

Figure 1, each node and the source of a message is distinctly 

identifiable by other nodes.  The physical topology can be 

either a fully connected graph, similar to the logical 

topology, or equivalently, a graph where a message from a 

source is broadcast to all other nodes at the same time.  For 

the basic case, broadcast is modeled using a single variable. 

 

Recall that all parameters are defined as integers.  The event 

response delay, D, and the network imprecision, d, are 

chosen to be at their minimum values of 1 and 0 clock ticks, 

respectively.  As a result, ∆AA is at its minimum of one clock 

tick.  This simplification, consequently, implies that the 

logical timers of the good nodes are in phase with each 

other.  Note that this simplification does not imply that the 

nodes are synchronized with each other.  To further 

minimize the state space, the clock drift rate, ρ, is chosen to 

be zero.  This simplification guarantees that the nodes’ 

State_Timer will remain in phase with each other.  Model 

checking of the system with ∆AA > 1 where the logical timers 

of the good nodes are in phase with respect to each other, is 

equivalent to model checking for ∆AA = 1 and the basic case. 

 However, model checking of the system with ∆AA > 1, 

where the logical timers of the good nodes are out-of-phase 

with respect to each other, poses a greater challenge. 

 

We recognize that the choice of the value for network 

imprecision, d = 0, is a nonrealistic assumption.  

Nonetheless, these simplifications are necessary in order to 

reduce the state space to a manageable size.  Furthermore, 

we believe that the basic case specifies the set of necessary 

conditions that all candidate solutions to this problem should 

satisfy.  As an example, the flaw in [7] was discovered as a 

direct result of applying that protocol to the basic case as 

documented in [8].  We also acknowledge that satisfying the 

basic case does not necessarily imply that the candidate 

solution solves the general case of this problem. 

In order to expedite the self-stabilization process, in general, 

and in order to minimize the state space for model checking 

purposes, in particular, the convergence time has to be 

minimized.  It was argued in [9, 10] that PT,min = 10 and PM 

≥ PT.  Although the maximum duration of the Restore state, 

PT, can be any value larger than the required minimum, PT is 

chosen to be PT,min.  In order to minimize the state space, PM 

is chosen to be equal to PT.  Therefore, synchronization 

period, P, for the basic case is chosen to be P = PM = PT = 

10.  For the basic case, the parameters d and ρ are chosen to 

be zeros. In other words, there are no variations in the 

communication delay and the nodes do not drift with respect 

to each other.  Model checking of the system with larger 

values for PM and PT is equivalent to model checking for P = 

PM = PT = 10. 

 

A system clock, SCLK, is introduced to keep track of 

passage of time from the global perspective.  The SCLK is 

managed at the system level and is incremented per SMV 

cycle.  Each node has a logical clock, Local_Timer, that 

locally keeps track of time.  This logical clock is used to 

measure the convergence time, C, as well as the self-

stabilization precision, ∆Precision, across good nodes (i.e. 

external view of the system).  Since for the basic case the 

logical timers (State_Timer and Local_Timer) of the good 

nodes  are  in  phase  with each other and since ∆AA = 1 and 

ρ = 0, a single SCLK suffices to drive timers of all nodes.  

The use of a single SCLK also eliminates redundancies at the 

node level for replicating behavior of local oscillators and, 

thus, reduces the state space substantially.  The SCLK, 

therefore, binds the whole system together, providing a 

means for advancing the State_Timer and Local_Timer at 

the node and an external view of the system at any time.  

Although the use of a single clock does not imply synchrony 

at the nodes, it does imply that the nodes are in phase with 

each other at the State_Timer and Local_Timer levels.  

However, due to the inherent randomness of the operation of 

the model checkers, the order of execution of the nodes is 

not predetermined.  Since there is no control over the order 

of transmission of messages and the start of execution of the 

nodes at each model checker cycle, the nodes potentially 

broadcast and receive messages out of order of issuance. 

5. MODELING THE SYSTEM  

To accommodate for proper timing of operations of the 

system, variables are needed to keep track of passage of 

time in each monitor and node.  Introduction of such 

variables exponentially increases the state space beyond the 

4GB available memory.  For the general case of modeling 

this protocol, a Transmit_Timer is needed at every node to 

regulate proper timing of outgoing messages.  A 

Receive_Timer is needed at each monitor to keep track of 

proper timing of incoming messages from its corresponding 

source [9, 10].  As ∆AA increases linearly, the state space 

associated with Transmit_Timer and Receive_Timer 

increases exponentially. 
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There are two different ways of modeling this protocol, 

either all operations are done sequentially in one big 

module, or the operations are partitioned between the node 

and its monitors.  In a sequential model, all activities take 

place within the same scope and during one clock tick.  Such 

a model is not readily scalable.  A modular model is readily 

scalable, but requires coordinated interactions between the 

node and its monitors.  Either the monitors have to inform 

the node of the changes in their current status or the node 

has to poll the status of the monitors to stay current with the 

changes in the system.  In turn, the monitors have to be 

informed by the node to take certain actions at the 

appropriate time.  Since the node and its monitors operate 

with respect to a local clock, there will be a delay in a 

monitor’s response to the node’s commands.  The 

interactions between the node and its monitors can be 

coordinated either based on time or by passing a control 

token in a master-target fashion. 

 

In this SMV model, a modular approach is employed where 

the interactions between a node and its monitors are 

coordinated based on time.  Also, to minimize the state 

space both positive and negative edges of the SCLK are 

used.  In particular, the nodes operate at the positive edge of 

the SCLK while the monitors operate at the negative edge of 

the SCLK.  For ∆AA = 1, operating at the positive edge of the 

SCLK, the nodes are guaranteed not to violate the minimum 

transmission time requirement for their consecutive output 

messages.  Therefore, for the basic case there is no need for 

the Transmit_Timer variable and, consequently, no need for 

the Receive_Timer variable.  Thus, further reduction in 

memory and computation requirements is achieved.  Since 

∆AA = D = 1 and ∆Drift = 0,  

 

∆Precision = (3F - 1) ∆AA - D + ∆Drift = 2∆AA - D + 0 = ∆AA, and  

∆Precision = ∆AA = 1. 

 

Since ∆AA = 1 and PT = PM = P = 10,  

C = (2PT + PM) ∆AA = 3P = 30∆AA = 30. 

 

6. MODELS AND DATA STRUCTURES 

In this section, the system components are modeled and 

subsequently their data structures are defined.  Detailed 

descriptions of these constructs and the SMV code of the 

basic case are reported in [12]. 

 

6.1. Modeling Faulty Nodes 

The fault tolerant requirement of K ≥ 3F+1 implies that the 

system of 4 nodes can tolerate up to one Byzantine faulty 

node.  Therefore, the system is devised to consist of 3 good 

nodes and one faulty node.  In Figure 4 the faulty node, N4, 

is shown in gray. 

 

      

 
N2

N3N4

N
1

 

Figure 4.  A 4-node system with a faulty node. 

 

To properly portray the behavior of the faulty node, Figure 4 

needs to be redrawn.  Figure 5 portrays a symmetric faulty 

node and a crash-silent node that is a special case of a 

symmetric faulty node where every good node, N1 through 

N3, have the same view of the faulty node, N4. 

 

      

 
N2

N3N4

N1

       

 
N2

N3

N1

 
  Symmetric faulty           Crash-silent  

 

Figure 5.  A 4-node system with a symmetric faulty node. 

 

Modeling of an asymmetric (Byzantine) faulty node is more 

complex than the symmetric faulty node.  The malicious 

nature of the Byzantine faulty node is such that as if each 

good node is affected independently by the Byzantine faulty 

node.  Such behavior of the Byzantine faulty node is 

depicted in Figure 6 by replicating the effects of the 

Byzantine faulty node, N4, for each good node N1 through 

N3.  Furthermore, the Byzantine faulty behavior modeled 

here is a node with arbitrarily malicious behavior.  Defined 

earlier as permanent Byzantine faulty, the Byzantine faulty 

node is allowed to influence other nodes at every clock tick 

and at all time. 

 

      

 
N2

N3N4,3

N1N4,1 N4,2

 

Figure 6.  A 4-node system with an asymmetric (Byzantine) 

faulty node. 

 

Since the behavior of a faulty node is not the same as a good 

node, modeling of a faulty node requires rethinking.  Proper 

modeling of faulty nodes can potentially result in 

considerable state space reduction.  It particular, a Byzantine 

faulty node may transmit any one of the three possible 

messages, namely, NONE, Resync, or Affirm at any time.  

Additionally, unlike the good nodes, local state of a faulty 

node does not play a role in the operation of this protocol.  

Therefore, the faulty node is modeled as a special node only 

capable of randomly producing any one of the three 

messages at any clock tick and without any internal state.  
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Consequently, the faulty node’s data structure has only one 

parameter, Message_Out.  The range of values that this 

element can hold is enumerated as follows. 

 

Message_Out = {NONE, Resync, Affirm} 

 

6.2. Modeling Monitors 

The assessment results of the monitored nodes are utilized 

by the node in the self-stabilization process.  The node 

consists of a state machine and a set of (K -1) monitors.  The 

state machine describes the collective behavior of the node, 

Ni, utilizing assessment results from its monitors, M1 .. Mi-1, 

Mi+1 .. MK as shown in Figure 7, where Mj is the monitor for 

the corresponding node Nj. 

 

   

 Node i 

State 

Machine

From Nk

From Ni+1

From N1

To other nodes

M
i+1

Mk

From Ni-1
Mi-1

M1

Node i 

 

 

Figure 7.  Interaction of the node’s state machine and its 

monitors. 

 

A monitor keeps track of activities of its corresponding 

source node.  A monitor detects proper sequence and 

timeliness of the received messages from its corresponding 

source node.  A monitor reads, evaluates, time stamps, 

validates, and stores only the last message it received from 

that node.  A monitor also keeps track of the state of the 

source node by keeping track of received Resync messages, 

separately.  The monitor’s data structure consists of 

Last_Message, Receive_Timer, Message_Valid, 

Delta_RR_Timer, and Received_Resync.  The Last_Message 

element represents the last valid message received from the 

corresponding source node.  The Receive_Timer element 

represents the time interval between arrival of the last two 

messages from the corresponding source node.  As discussed 

in the previous section, there is no need to model this 

element for the basic case.  The Message_Valid element 

indicates whether or not the last message received was valid. 

 The Delta_RR_Timer element represents the duration of 

time between any two consecutive valid Resync messages 

from the corresponding source.  The Received_Resync 

element indicates whether the last valid message received 

was a Resync message.  The range of values that these 

elements can hold is enumerated as follows. 

 

Last_Message = {Resync, Affirm} 

Receive_Timer = {0 .. (∆AA+1)}  

Message_Valid = {0, 1} 

Delta_RR_Timer = {0 .. (PT + PM)}  

Received_Resync = {0, 1} 

 

In this modular SMV model, coordinated interactions 

between the node’s state machine and the monitors require 

sharing some of the node’s status with its monitors.  In 

particular, the variables Node_State, Node_State_Timer, and 

Accept are used to reflect the changes in the State of the 

node as it transitions through the state machine.  In contrast, 

the monitors’ Message_valid, Received_Resync, and 

Last_Message are used by the node’s state machine in 

evaluating the protocol functions and determining the proper 

transitory conditions. 

 

The functions InvalidAffirm() and InvalidResync() are 

modeled as part of the Message_Valid by examining the 

timing of received messages. 

 

6.3.  Modeling Good Nodes  

The state machine describes the collective behavior of the 

node, Ni, utilizing assessment results from its monitors, M1 .. 

Mi-1, Mi+1 .. MK as shown in Figure 7.  The good node’s data 

structure consists of State, Accept_Events, State_Timer, 

Local_Timer, Transmit_Timer, and Message_Out.  The 

State element represents the current state of the node.  The 

Accept_Events element is the count of accept events since 

the node entered the Restore state.  The State_Timer element 

represents the duration of current state of the node.  The 

Local_Timer element represents the duration of time since 

the node has been synchronized with other good nodes.  The 

Transmit_Timer element represents the passage of time 

since the transmission of the last message by the node.  As 

discussed in the previous section, there is no need to model 

this element for the basic case.  The Message_Out element 

represents the out going message of the node.  The range of 

values that these elements can hold is enumerated as 

follows. 

 

State  = {Restore, Maintain} 

Accept_Events = {0 .. (F+1)} 

State_Timer = {0 .. PM} 

Local_Timer = {0 .. (PT + PM)} 

Transmit_Timer = {0 .. (∆AA+1)} 

Message_Out = {NONE, Resync, Affirm} 

 

6.4.  Modeling Communication Channels  

The communication channel’s data structure consists of 

Message_In, Comm_Delay, and Message_Out.  The 

Message_In element represents the message deposited by 

the transmitting node.  The Comm_Delay represents the 

amount of delay associated with the channel.  The 

Message_Out element represents the delayed message being 

delivered to the destination nodes.  The range of values that 

these elements can hold is enumerated as follows. 
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Message_In    = {NONE, Resync, Affirm} 

Comm_Delay = {1 .. ∆AA} 

Message_Out = {NONE, Resync, Affirm} 

 

Since for the basic case ∆AA is one clock tick, a deposited 

message on a communication channel is available to the 

destination nodes at the next clock tick.  Therefore, a 

channel of depth one suffices.  Also since a message is 

broadcast to other nodes, a single variable suffices to 

represent the communication channel from a node to all 

other nodes.  Therefore, in order to reduce the state space, 

the communication channel is modeled implicitly and as part 

of the node’s out going message instead of introducing a 

new SMV module for the channels. 

 

7. PROPOSITIONS 

Computational tree logic (CTL), a temporal logic, is used to 

express properties of a system in this context.  CTL uses 

atomic propositions as its building blocks to make 

statements about the states of a system.  CTL then combines 

these propositions into formulas using logical and temporal 

operators with quantification over runs.  The CTL operators 

have the following format. 

 

Q T 

there exists an execution E X next 

for all executions  A F finally  

(eventually) 

G globally 

U until 

 

 

In this section the claims of convergence and closure 

properties as well as the claims of maximum convergence 

time and determinism of the protocol for the basic case are 

examined.  Although in the description of the protocol these 

properties are stated separately, nevertheless, they are 

examined via one CTL proposition.  Validation of this 

general CTL proposition requires examination of a number 

of underlying propositions.  In particular, since ∆Local_Timer(t) 

is defined in terms of the Local_Timer of the good nodes 

and the Local_Timer is defined in terms of the State_Timer, 

examination of the properties that described proper behavior 

of the State_Timer take precedence.  As a result, in this 

section, the four underlying propositions are examined 

followed by the general proposition that validates the 

convergence and closure properties of the protocol as well 

as the claims of maximum convergence time and 

determinism. 

 

The following properties are described with respect to only 

one good node, namely Good_Node_1.  Since all good 

nodes are identical, due to the symmetry, the result of the 

propositions equally similarly applies to other good nodes. 

 

Proposition 1:  This property specifies whether or not the 

State_Timer of a good node takes on a given value in its 

range infinitely often, for instance, its maximum value of P.  

The expected result for this proposition is a true value. 

 
 

AF (Good_Node_1.State_Timer = P) 

 

 

Examining the negation of this property is expected to 

produce a false value.  This proposition verifies that the 

State_Timer of a good node cannot never reach a given 

value. 

 
 

EG !(Good_Node_1.State_Timer = P) 

 

 

Similar properties apply to the Local_Timer, but within its 

expected range. 

 

Proposition 2:  This property specifies whether or not the 

State_Timer of a good node takes on all values in its range 

infinitely often.  In other words, it verifies that the model 

does not deadlock.  Furthermore, the value of the 

State_Timer of a good node at the next clock tick is different 

from its current value and is its expected next value in the 

sequence of 0 to P.  The expected result for this proposition 

is a true value. 

 
 

AG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->  

AX ((SCLK=0) & ((Good_Node_1.State_Timer = i) | 

(Good_Node_1.State_Timer = i+1)))) & 

AG (((SCLK = 1) &  

(Good_Node_1.State_Timer = P)) ->  

AX ((SCLK = 0) &  

(Good_Node_1.State_Timer = 0))) 

 

For all i = 0 .. (P-1) 

 

 

Examining the negation of this property is expected to 

produce a false value.  This proposition verifies that the next 

value of the State_Timer of a good node cannot be the same 

as its current value.  In other words, its value always 

advances within the expected range. 

 

 

EG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->  

EX ((SCLK = 0) & (Good_Node_1.State_Timer = i))) |  

 

For all i = 0 .. (P-1) 

 

 

Similar properties apply to the Local_Timer, but within its 

expected range. 
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Proposition 3:  This property specifies whether or not time 

advances and the amount of time elapsed, Elapsed_Time, 

has advanced beyond the predicted convergence time, 

Convergence_Time.  The expected result for this proposition 

is a true value. 

 

 
Elapsed_Time:= (Global_Clock >= Convergence_Time) ; 

AF (Elapsed_Time) 

 

 

The Global_Clock is a measure of elapsed time from the 

beginning of the operation and with respect to the real time, 

i.e. external view.  The Elapsed_Time is indicative of the 

Global_Clock reaching its target maximum value of 

Convergence_Time. 

 

 
 

init (Global_Clock) := 0 ; 

next (Global_Clock) :=  

case 

(SCLK = 1) & (Global_Clock < Convergence_Time) : 

Global_Clock + 1 ; 

1 : Global_Clock ; -- no-op 

esac ; 

 

Elapsed_Time := (Global_Clock >= Convergence_Time) ; 

 

 

Proposition 4:  Similar to Proposition 2, this property 

specifies whether or not the State_Timer of a good node 

takes on all values in its range infinitely often but beyond 

the convergence time, i.e. after Elapsed_Time has become 

true.  The expected result for this proposition is a true value. 

Examining the negation of this property is expected to 

produce a false value.  Similar properties apply to the 

Local_Timer, but within its expected range. 

 
 

AF (Elapsed_Time) & 

AG (((SCLK = 1) & (Elapsed_Time) & 

(Good_Node_1.State_Timer = i)) ->  

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) | 

(Good_Node_1.State_Timer = i+1)))) & 

AG (((SCLK = 1) & (Elapsed_Time) & 

(Good_Node_1.State_Timer = j)) ->  

AX ((SCLK = 0) &   

(Good_Node_1.State_Timer = j+1))) & 

AG (((SCLK = 1) & (Elapsed_Time) & 

(Good_Node_1.State_Timer = P)) ->  

AX ((SCLK = 0) &  (Good_Node_1.State_Timer = 0))) 

 

For all i = 0 .. 4 

For all j = 5 .. (P-1) 

 

 

Proposition 5: The convergence and closure properties are 

described in Section 2.5.  This proposition encompasses the 

criteria for the convergence and the closure properties as 

well as the claims of maximum convergence time and 

determinism.  This proposition specifies whether or not the 

system will converge to the predicted precision after the 

elapse of convergence time, Elapsed_Time, and whether or 

not it will remain within that precision thereafter.  The 

expected result for this property is a true value. 

 
 

AF (Elapsed_Time) & 

AG (Elapsed_Time -> All_Within_Precision) & 

AG ((Elapsed_Time & All_Within_Precision) ->  

AX (Elapsed_Time & All_Within_Precision)) 

 

 

The proper value of the All_Within_Precision is determined 

by measuring the difference of maximum and minimum 

values of the Local_Timers of all good nodes for the current 

SCLK tick and in conjunction with the result from the 

previous SCLK tick.  The expected difference of 

Local_Timers is the predicted precision bound. 

 

The negation of the above proposition is listed below and 

the expected result is a false value.  This property specifies 

that after the elapse of convergence time, Elapsed_Time, 

whether or not the system will not converge or if it 

converges, whether or not it drifts apart beyond the expected 

precision bound. 

 

 

AF (Elapsed_Time) &  

AG (Elapsed_Time -> All_Within_Precision) &  

AG ((Elapsed_Time & All_Within_Precision) ->  

EX (! All_Within_Precision)) 

 

 

8. RESULTS 

This SMV model checking effort was performed on a PC 

with 4GB of memory running Linux.  SMV was able to 

examine all possible scenarios and the basic case of the 

protocol was model checked.  The model checking results 

are listed in the following tables.  The negation of a property 

is denoted by using the unary operator ‘!’. 

 

The Byzantine faulty behavior modeled here is a node with 

arbitrarily malicious behavior.  The Byzantine faulty node is 

allowed to influence other nodes at every clock tick and at 

all time as depicted in Figure 6.  Regardless of the nature of 

the faulty node, no assumptions are made about the initial 

internal status of the nodes, the monitors, and the system.  

For instance, a node can wake up in the Maintain state and 

transmit a Resync, message.  Although such behavior from a 

good node is not exhibited during normal operation, 

nevertheless, it is allowed for the random start up.  Such a 
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model is for the weakest assumptions about the behavior of 

the faulty nodes, the internal state of data structures of the 

nodes, the monitors, and the system as a whole, and thus 

produces the strongest results. 

 

Table 1.  Results in the presence of a Byzantine faulty node. 

 

Proposition Result Time(sec) Mem(GB) 

1 T 1311 1.2 

1! F 1318 1.2 

2 T 0.2 0.012 

2! F 8866 1.2 

3 T 0.04 - 

4 T 19 0.056 

4! F 4702 1.2 

5 T 2313 2 

5! F 3413 2.1 

 

Table 1 lists the results of model checking of the basic case 

for the stated propositions 1 through 5, where the duration of 

the Maintain and Restore states, PM and PT, are  chosen to 

be PM = PT = Period = 10 and the maximum convergence 

time, Convergence_Time, is 30.  As shown in Table 1, the 

maximum memory usage is about 2GB after applying the 

state space reduction techniques.  The amount of memory 

used and processing time needed depend on the BDD 

construction and the nature of the query.  Although 

verification of the stated propositions suffices to validate the 

claims of correctness and determinism of the protocol and in 

the presence of a Byzantine fault, the propositions are 

further examined for other, and hence less severe, types of 

faults.  For the following scenarios, the values for the Period 

and Convergence_Time are the same as for Table 1. 

 

8.1.  Symmetric Fault 

In this case, all good nodes receive identical messages from 

a single faulty node as depicted in Figure 5.  The faulty node 

still behaves randomly, but its effect at the receiving nodes 

is identical.  As shown in Table 2, the maximum available 

memory is used to model check this case. Due to the BDD 

construction, the memory usage is far more than the 

Byzantine faulty case. 

 

Table 2.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time(sec) Mem(GB) 

1 T 2573 2.0 

2 T 0.2 0.012 

3 T 0.04 - 

4 T 62 0.160 

5 T 3975 3.5
*
 

 

*
 Of  4GB available memory, maximum memory utilized by 

SMV is approximately 3.5GB. 

 

8.2.  Crash-Silent Fault, a.k.a. Stuck-at NONE Message 

This case is a special case of the symmetric faulty node 

where the faulty node is not transmitting any messages.  This 

case is modeled such that the associated message from the 

faulty node to all good nodes is a NONE message signifying 

lack of transmission by the faulty node.  This case is 

depicted in Figure 5. 

 

Table 3.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time(sec) Mem(GB) 

1 T 28 0.045 

2 T 0.15 - 

3 T 0.04 - 

4 T 6 0.015 

5 T 365 0.34 

 

8.3. Stuck-at Resync Message  

This case is another special case of the symmetric faulty 

node where all good nodes receive identical messages from 

a single faulty node.  The faulty node transmits the same 

message to all good nodes all the same time. 

 

Table 4.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time(sec) Mem(GB) 

1 T 81 0.25 

2 T 0.15 - 

3 T 0.04 - 

4 T 7 0.025 

5 T 605 0.61 

 

8.4. Stuck-at Affirm Message  

This case is another special case of the symmetric faulty 

node where all good nodes receive identical messages from 

a single faulty node.  The faulty node transmits the same 

message to all good nodes all the same time. 

 

Table 5.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time(sec) Mem(GB) 

1 T 19 0.033 

2 T 0.15 - 

3 T 0.04 - 

4 T 5 0.017 

5 T 276 0.3 
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9. APPLICATIONS 

The proposed self-stabilizing protocol is expected to have 

many practical applications as well as many theoretical 

implications.  Embedded systems, distributed process 

control, synchronization, inherent fault tolerance which also 

includes Byzantine agreement, computer networks, the 

Internet, Internet applications, security, safety, automotive, 

aircraft, wired and wireless telecommunications, graph 

theoretic problems, leader election, time division multiple 

access (TDMA), and the SPIDER
3
 project [13, 14] at 

NASA-LaRC are a few examples.  These are some of the 

many areas of distributed systems that can use self-

stabilization in order to design more robust distributed 

systems. 

10. SUMMARY AND FUTURE WORK 

In this report a SMV model of a simplified model of a rapid 

Byzantine-fault-tolerant self-stabilizing protocol for 

distributed clock synchronization systems is presented.  The 

simplified model of the protocol is model checked using 

SMV where the entire state space is examined and proven to 

self-stabilize in the presence of one permanent Byzantine 

faulty node.  Furthermore, the simplified model of the 

protocol is proven to deterministically converge with a 

linear convergence time with respect to the self-stabilization 

period as predicted.  This protocol does not rely on any 

assumptions about the initial state of the system except for 

the presence of sufficient good nodes and no assumptions 

are made about the internal status of the nodes, the monitors, 

and the communication channels, thus making the weakest 

assumptions and producing the strongest results.  The 

Byzantine faulty behavior modeled here is a node with 

arbitrarily malicious behavior.  The Byzantine faulty node is 

allowed to influence other nodes at every clock tick and at 

all time.  The only constraint is that the interactions are 

restricted to defined interfaces. 

 

In this report, modeling challenges are addressed and 

abstraction techniques are illustrated.  The basic case is 

introduced that specifies the set of necessary conditions that 

all candidate solutions to this problem should satisfy.  The 

flaw in [7] was discovered as a direct result of applying that 

protocol to the basic case [8].  Although model checking 

results of the basic case of the protocol are promising, these 

results are not sufficient to confirm that the protocol solves 

the general case of this problem. 

 

Having mechanically verified a simplified model of the 

protocol, new hypothesis and conjectures are now practical 

for examination.  The current modeling approach is a very 

powerful tool for asking “What if?" questions that are 

difficult to answer either by manual analysis or by testing 

12                                                           
3
 Scalable Processor-Independent Design for Enhanced Reliability 

(SPIDER). 

real hardware.   

 

In our ongoing efforts toward the verification of this 

protocol for the general case, the SMV model of the 

simplified version of this protocol has been redesigned and 

restructured.  Also, the protocol has been redesigned and 

further simplified.  As a result, the current model requires 

less memory, making exploration of more complex and 

larger configurations easier.  Consequently, instances of the 

protocol representing the out-of-phase scenario where D > 1 

and d = 0, and hence, ∆AA > 1, have been explored.  Thus 

far, the analyses indicate that the protocol solves the out-of-

phase scenario.  Instances of the protocol representing a 

more complex system where D ≥ 1 and 0 ≤ d ≤ 1 have also 

been examined.  Thus far, the analyses indicate that the 

protocol is applicable to realizable systems and practical 

applications.  In addition, some instances of the protocol 

representing larger systems, where F > 1, have also been 

studied.  Thus far, the  analyses  indicate  that the protocol 

does not solve the general case of this  problem  where F > 

1.  A detailed explanation of the analyses is beyond the 

scope of this report.  Nevertheless, so far this model 

checking effort proved that, at a minimum, a deterministic 

solution for specific cases of this problem exists.  We expect 

that this protocol serves as the starting point toward finding 

a comprehensive solution for the general case.  In-depth 

analyses of the simplified version of this protocol for more 

complex and larger systems will be the subject of a 

subsequent report.  This analysis will include pitfalls, 

relevant counterexamples, an argument toward impossibility 

results, as well as scenarios where this protocol can be used 

as a basis for larger systems and, thus, for realizable systems 

and practical applications. 
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